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Abstract:  
 
Single-cell RNA sequencing data can provide unprecedented insights into cellular 
heterogeneity, yet batch effects arising from both technical and biological factors can 
obscure meaningful signals. We propose an autoencoder Mixed Effects Deep Learning 
framework, called aMEDL, that separately models batch-invariant and batch-specific 
variation to improve the suppression of batch effects, while preserving biologically 
relevant information. The aMEDL framework comprises two complementary autoencoder 
networks: an adversarial network that learns a batch-invariant representation, and a 
probabilistic network that learns batch-specific signals. This dual network approach 
explicitly models batch distributions rather than discarding them, capturing crucial 
biological variation that might otherwise be lost. We evaluate aMEDL across diverse 
datasets, including a single-cell dataset from cardiovascular tissue of healthy donors1 and 
a single-nucleus dataset from subjects with Autism Spectrum Disorder (ASD) and 
Typically Developing (TD) individuals2 The framework is compared to the traditional 
method for scRNA-seq processing, principal component analysis (PCA), and to a newer 
neural network approach for data abstraction that uses a single autoencoder (AE) 
network. In both cases, the proposed framework outperforms the comparable methods. 
In the Healthy Heart dataset, while measuring batch separability via the mean Average 
Silhouette Width (ASW) with a range of -1.0 to +1.0, we find that aMEDL’s random effects 
subnetwork accurately captures batch differences (higher is better) with an ASW of +0.37, 
outperforming PCA (−0.48) and AE (−0.45). Meanwhile, its fixed effects component 
effectively suppresses batch signals in the latent space (lower is better), with an ASW of 
−0.50 compared to −0.48 (PCA) and −0.45 (AE). Additionally, using UMAP-based 
visualizations, aMEDL is observed regularly outperforming the comparable methods. For 
example in the ASD dataset, it preserved cell type information that PCA did not and 
avoided spurious clusters observed from the AE approach. Similar favorable results were 
obtained in the ASD dataset, where the random effects subnetwork reliably captured 
donor-specific variations, demonstrating aMEDL’s ability to disentangle donor variability 
from shared biological signals. Overall, aMEDL not only eliminates undesired batch 
effects, but also maintains batch-specific differences, preventing overcorrection and false 
clustering. As the first deep learning framework to simultaneously model batch-invariant 
and batch-specific signals, aMEDL provides an interpretable, generative platform for 
uncovering disease mechanisms, donor variability, and technical artifacts in single-cell 
transcriptomics, ultimately paving the way for deeper insights into health and disease. 
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